AN INTRAMOLECULAR CHLOROALKYLATION REACTION

by M. P. Stevens and F. Rasmara

Chemistry Department

American University of Beirut

Beirut, Lebanon

(Received in UK 13 March 1970; accepted for publication 9 April 1970)

Treatment of an acetic acid suspension of 1,4,5,6,7,8-hexaphenyl-1,4-oxido-1,2,3,4-tetra-hydro-2-naphthaldehyde (la, the Diels-Alder adduct of hexaphenylisobensofuran with acrolein) with gaseous hydrogen chloride at ambient temperature yields moderately soluble 2-phenyl-3,4-(tetraphenylbenso)-9-chlorofluorene (2, melting point 193° dec.) in about 50% yield.

la: X = CHO

1b: X - COCH3

le: X = CN

2

The structure of 2 was established from the following evidence:

- a) Elemental analysis (recrystallized from benzene-ethanol). Found: C, 89.40; H, 5.09; Cl, 5.65. Calculated for C₄₇H₃₁Cl: C, 89.43; H, 4.95; Cl, 5.62.
 - b) Lability of chlorine (positive reaction with silver nitrate).
 - c) NMR spectrum³ (carbon disulfide solution): singlet at 5.83 { and complex multiplet at

1890 No.22

6.4 to 7.6 (in approximately the correct ratio (1 to 30).

d) U.V. spectrum: λ_{max} (ethanol): 243, 277, 370 m μ . (Low solubility in ethanol precluded an accurate determination of the extinction coefficients, but $\log \epsilon$'s were estimated to be between 4 and 5).

The infrared spectrum was inconclusive due to the complexity in the 600 - 800 cm⁻¹ region, although 2 exhibited a strong band at 742 cm⁻¹ (o-disubstituted benzene?) absent in the spectrum of la.

Analogous reactions have been reported for the Diels-Alder adducts of acrolein with 1,3-diphenylisobenzofuran and 1,3,4,7-tetraphenylisobenzofuran although in neither instance was the structure of the chlorinated product established. In the latter case, 2-chloro-1,4,5,8-tetraphenylnaphthalene was suggested as a possible structure on the basis of satisfactory elemental analysis and UV spectrum identical to that of 1,4,5,8-tetraphenylnaphthalene; however, both analysis and spectrum are also consistent with the fluorene derivative. In both of these cases 4,5, the corresponding phenylated 2-naphthaldehydes were also isolated, but we have been unable, thus far, to prepare the analogous 1,4,5,6,7,8-hexaphenyl-2-naphthaldehyde (3).

3

Preparation of the fluorene derivative, 2, is an example of an extremely facile intramolecular haloalkylation reaction⁶. The fact that previous workers^{4,5} were able to isolate
the phenyl-substituted 2-naphthaldehydes as well as the chloroalkylated compounds indicates
that aromatization precedes ring closure. Our failure to isolate the aromatized aldehyde,
3, could be the result of extra crowding caused by the phenyls at positions 6 and 7 pushing
the phenyl group at position 1 into closer proximity with the aldehyde group.

Attempts to make the hexaphenylisobenzofuran - methyl vinyl ketone adduct (lb) undergo

a similar chloroalkylation reaction failed, as did attempts to make the acrylonitrile adduct (<u>lc</u>) undergo an intramolecular Hoesch acylation reaction⁷ (using hydrogen chloride with or without added zinc chloride) to form the fluorenone derivative. In fact, both <u>lb</u> and <u>lc</u> failed even to aromatize under these conditions^{8,9}.

Acknowledgement. The authors are indebted to the Research Committee of the School of Arts and Sciences, American University of Beirut, for financial support including a graduate research assistantship to one of us (F. R.).

References and Footnotes

- 1. W. Ried and K.H. Bonnighausen, Ann., 639, 61 (1960).
- 2. Compound 2 appears to decompose with evolution of HCl. This possible thermal α -elimination reaction is under investigation.
- The bensylic proton of diphenylmethyl chloride absorbs at 6.12 (in deuterochloroform.
 (N.S. Bhacca, L.F. Johnson, and J.N. Schoolery, High Resolution NMR Spectra Catalog, Vol. 1,
 Varian Associates, 1962, Spectrum No. 176).
- 4. A. Etienne, A. Spire, and E. Toromanoff, Bull. Soc. Chim. France, 750 (1952).
- 5. E.D. Bergmann, Sh. Blumberg, P. Bracha, and Sh. Epstein, Tetrahedron, 20, 195 (1964).
- 6. Haloalkylations are usually run in the presence of Friedel-Crafts catalysts, particularly zinc chloride. See, for example, R.C. Fuson and C.H. McKeever, Organic Reactions, 1, 63 (1942); G.A. Olah and W.S. Tolgyesi in G.A. Olah, "Friedel-Crafts and Related Reactions", Interscience, New York, 1963-4, Vol. 2, pp. 659-784.
- 7. P.E. Spoerri and A.S. DuBois, Organic Reactions, 5, 387 (1949).
- 8. Bergmann and coworkers (Ref. 5) were also unable to aromatize the methyl vinyl ketone and acrylonitrile Diels-Alder adducts of 1,3,4,7-tetraphenylisobensofuran, but Etienne and coworkers (Ref. 4) did aromatize the methyl vinyl ketone-1,3-diphenylisobensofuran adduct with gaseous hydrogen chloride; the aromatized methyl ketone did not, however, undergo chloro-alkylation.

- 9. The failure of <u>lc</u> to undergo the intramolecular acylation reaction is apparently not due to its inability to aromatize since 2,3,4,5-tetraphenylbenzonitrile lo was also found to be unreactive under conditions of the Hoesch reaction. Similar conclusions may be drawn about <u>lb</u> (see footnote 8).
- 10. R.F. Doering, R.S. Miner, Jr., L. Rothman, and E.I. Becker, J. Org. Chem., 23, 520 (1958).